Необходимо управлять 2 различными датчиками (MPU 6050 и Admp 401) одновременно

Мне нужно управлять 2 различными датчиками (MPU 6050 и Admp 401) одновременно. Мне удалось запустить каждый из них отдельно, и я не знаю, как манипулировать кодом, чтобы они могли работать вместе. Мой опыт в кодировании является базовым, и я не тот, кто написал эти коды.

Вот скетчи:

1.Код, используемый для IMU (MPU-6050)

// CONNECTIONS
//Gyro - Arduino UNO R3
//VCC  -  5V
//GND  -  GND
//SDA  -  A4
//SCL  -  A5
//INT - port-2

#include <Wire.h>
//Declaring some global variables
int gyro_x, gyro_y, gyro_z;
long gyro_x_cal, gyro_y_cal, gyro_z_cal;
boolean set_gyro_angles;

long acc_x, acc_y, acc_z, acc_total_vector;
float angle_roll_acc, angle_pitch_acc;

float angle_pitch, angle_roll;
int angle_pitch_buffer, angle_roll_buffer;
float angle_pitch_output, angle_roll_output;

long loop_timer;
int temp;

void setup() {
  Wire.begin();                                                        //Start I2C as master
  setup_mpu_6050_registers();                                          //Setup the registers of the MPU-6050 
  for (int cal_int = 0; cal_int < 1000 ; cal_int ++){                  //Read the raw acc and gyro data from the MPU-6050 for 1000 times
    read_mpu_6050_data();                                             
    gyro_x_cal += gyro_x;                                              //Add the gyro x offset to the gyro_x_cal variable
    gyro_y_cal += gyro_y;                                              //Add the gyro y offset to the gyro_y_cal variable
    gyro_z_cal += gyro_z;                                              //Add the gyro z offset to the gyro_z_cal variable
    delay(3);                                                          //Delay 3us to have 250Hz for-loop
  }

  // divide by 1000 to get avarage offset
  gyro_x_cal /= 1000;                                                 
  gyro_y_cal /= 1000;                                                 
  gyro_z_cal /= 1000;                                                 
  Serial.begin(115200);
  loop_timer = micros();                                               //Reset the loop timer
}

void loop(){

  read_mpu_6050_data();   
 //Subtract the offset values from the raw gyro values
  gyro_x -= gyro_x_cal;                                                
  gyro_y -= gyro_y_cal;                                                
  gyro_z -= gyro_z_cal;                                                
         
  //Gyro angle calculations . Note 0.0000611 = 1 / (250Hz x 65.5)
  angle_pitch += gyro_x * 0.0000611;                                   //Calculate the traveled pitch angle and add this to the angle_pitch variable
  angle_roll += gyro_y * 0.0000611;                                    //Calculate the traveled roll angle and add this to the angle_roll variable
  //0.000001066 = 0.0000611 * (3.142(PI) / 180degr) The Arduino sin function is in radians
  angle_pitch += angle_roll * sin(gyro_z * 0.000001066);               //If the IMU has yawed transfer the roll angle to the pitch angel
  angle_roll -= angle_pitch * sin(gyro_z * 0.000001066);               //If the IMU has yawed transfer the pitch angle to the roll angel
  
  //Accelerometer angle calculations
  acc_total_vector = sqrt((acc_x*acc_x)+(acc_y*acc_y)+(acc_z*acc_z));  //Calculate the total accelerometer vector
  //57.296 = 1 / (3.142 / 180) The Arduino asin function is in radians
  angle_pitch_acc = asin((float)acc_y/acc_total_vector)* 57.296;       //Calculate the pitch angle
  angle_roll_acc = asin((float)acc_x/acc_total_vector)* -57.296;       //Calculate the roll angle
  
  angle_pitch_acc -= 0.0;                                              //Accelerometer calibration value for pitch
  angle_roll_acc -= 0.0;                                               //Accelerometer calibration value for roll

  if(set_gyro_angles){                                                 //If the IMU is already started
    angle_pitch = angle_pitch * 0.9996 + angle_pitch_acc * 0.0004;     //Correct the drift of the gyro pitch angle with the accelerometer pitch angle
    angle_roll = angle_roll * 0.9996 + angle_roll_acc * 0.0004;        //Correct the drift of the gyro roll angle with the accelerometer roll angle
  }
  else{                                                                //At first start
    angle_pitch = angle_pitch_acc;                                     //Set the gyro pitch angle equal to the accelerometer pitch angle 
    angle_roll = angle_roll_acc;                                       //Set the gyro roll angle equal to the accelerometer roll angle 
    set_gyro_angles = true;                                            //Set the IMU started flag
  }
  
  //To dampen the pitch and roll angles a complementary filter is used
  angle_pitch_output = angle_pitch_output * 0.9 + angle_pitch * 0.1;   //Take 90% of the output pitch value and add 10% of the raw pitch value
  angle_roll_output = angle_roll_output * 0.9 + angle_roll * 0.1;      //Take 90% of the output roll value and add 10% of the raw roll value
  Serial.print(" | Angle  = "); Serial.println(angle_pitch_output);

 while(micros() - loop_timer < 4000);                                 //Wait until the loop_timer reaches 4000us (250Hz) before starting the next loop
 loop_timer = micros();//Reset the loop timer
  
}




void setup_mpu_6050_registers(){
  //Activate the MPU-6050
  Wire.beginTransmission(0x68);                                        //Start communicating with the MPU-6050
  Wire.write(0x6B);                                                    //Send the requested starting register
  Wire.write(0x00);                                                    //Set the requested starting register
  Wire.endTransmission();                                             
  //Configure the accelerometer (+/-8g)
  Wire.beginTransmission(0x68);                                        //Start communicating with the MPU-6050
  Wire.write(0x1C);                                                    //Send the requested starting register
  Wire.write(0x10);                                                    //Set the requested starting register
  Wire.endTransmission();                                             
  //Configure the gyro (500dps full scale)
  Wire.beginTransmission(0x68);                                        //Start communicating with the MPU-6050
  Wire.write(0x1B);                                                    //Send the requested starting register
  Wire.write(0x08);                                                    //Set the requested starting register
  Wire.endTransmission();                                             
}


void read_mpu_6050_data(){                                             //Subroutine for reading the raw gyro and accelerometer data
  Wire.beginTransmission(0x68);                                        //Start communicating with the MPU-6050
  Wire.write(0x3B);                                                    //Send the requested starting register
  Wire.endTransmission();                                              //End the transmission
  Wire.requestFrom(0x68,14);                                           //Request 14 bytes from the MPU-6050
  while(Wire.available() < 14);                                        //Wait until all the bytes are received
  acc_x = Wire.read()<<8|Wire.read();                                  
  acc_y = Wire.read()<<8|Wire.read();                                  
  acc_z = Wire.read()<<8|Wire.read();                                  
  temp = Wire.read()<<8|Wire.read();                                   
  gyro_x = Wire.read()<<8|Wire.read();                                 
  gyro_y = Wire.read()<<8|Wire.read();                                 
  gyro_z = Wire.read()<<8|Wire.read();                                 
}

2.Код, используемый для MEMS-микрофона (ADMP401)

int mic = A0;               // A0 is the audio output of the pin, and since sound is analog, its connected to the analog pin in arduino
const int sampleTime = 2;   // sampling time for the input audio sound is 2ms
int micOut;

void setup() {
  Serial.begin(115200);
}

void loop() {
int micOutput = findPTPAmp();       // we use a PTPAmp function to find the peak to peak amplitude
   VUMeter(micOutput);   
}   


int findPTPAmp(){

   unsigned long startTime= millis();  // Start of sample window
   unsigned int PTPAmp = 0; 
// the above two are 2 time variables to find PTP amplitude

   unsigned int maxAmp = 0;
   unsigned int minAmp = 1023;
// these 2 are the signal variables to find PTP AMplitude
// We basically try to Find the max and min of the mic output within the 2 ms timeframe
   while(millis() - startTime < sampleTime) 
   {
      micOut = analogRead(mic);
      if( micOut < 1023) //to prevent erroneous readings; cause output can’t be greater than 1023
      {
        if (micOut > maxAmp)
        {
          maxAmp = micOut; //save only the max reading
        }
        else if (micOut < minAmp)
        {
          minAmp = micOut; //save only the min reading
        }
      }
   }

  PTPAmp = maxAmp - minAmp; 
  double micOut_Volts = (PTPAmp * 3.3) / 1023; // Convert ADC into voltage formula ; 3.3 is the Vcc.

  //Uncomment this line for help debugging (be sure to also comment out the VUMeter function)
  //Serial.println(PTPAmp); 

     
  return PTPAmp;   
}

// Volume Unit Meter function: map the PTP amplitude to a volume unit between 0 and 10.
// Map the mic PTP Amp to a volume unit between 0 and 10.
// We use Amplitude instead of voltage to give a larger and more accurate range for the map function that we use next in the code.
 
int VUMeter(int micAmp){
  int preValue = 0;

  
  int fill = map(micAmp, 23, 750, 0, 10); 

// val = map(val, 0, 1023, 0, 255);
val equals value of analogRead(0)
0, 1023 is the range of values that a reading from analogRead(0) could be.
0,255 is the range of values you are converting the value to.

  // only print the volume unit value if it differs from the previous value
  while(fill != preValue)
  {
    Serial.println(fill);
    preValue = fill;
  }
}

, 👍1

Обсуждение

Здравствуйте, в чем именно заключается ваша проблема при этом? Дело в том, что вы не знаете, как объединить 2 скетча? Эти 2 датчика не имеют ничего общего (один-датчик I2C, другой-аналоговый датчик, подключенный к АЦП), поэтому я бы предположил, что это сводится к "как объединить скетчи". Если да, вы, возможно, захотите взглянуть на это question, где даны общие инструкции о том, как это сделать, @chrisl

Отвечает ли это на ваш вопрос? Как вы объединяете 2 разных скетча together, @Juraj